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Abstract--Two-phase (air-water) flow experiments were conducted in artificial horizontal fractures 
(narrow channels). Two experimental set-ups were utilized. One set of experiments was performed by using 
two glass plates (1 x 0.5 m) with a gap width of I ram. The second set of experiments was performed using 
two bricks made of baked clay (28 x 14 cm) for which three gap widths of h I = 0.54 mm, h 2 = 0.40 mm 
and h 3 = 0.18 mm have been tested. Air and water were injected separately, through alternating capillary 
tubes for the first set-up and through a porous medium for the second. For each experiment, the fracture 
was initially saturated at constant water flow-rate, and air injection was then started. When steady state 
was reached, pressure drop and liquid volume fraction were measured. Then, air injection was increased 
stepwise and the experiment was repeated at different liquid flow rates. By varying the flow rates of each 
fluid phase, different flow structures were observed for the glass channel experiment: bubbles, fingering 
bubbles, complex, annular and droplet flow. These flow structures show more similarity to those observed 
in pipes than to those expected in porous media. Using the formalism developed for two-phase flow in 
pipes, and by taking experimental observations into account, a theoretical relationship for the two-phase 
pressure gradient is proposed. This relationship is evaluated with experimental data. Then, the results are 
analyzed with three models, First, the Lockhart & Matinelli model gives a good fit for both pressure drop 
and liquid volume fraction against the Martinelli parameter. Second, by considering the two phases 
flowing in the fracture as a single phase with averaged properties, the appropriate friction factor and 
Reynolds number of the mixture are defined. This model, which is similar to the homogeneous model, 
permits the selection of the experimental data corresponding to laminar flow. Finally, by using the 
generalized Darcy model, it was found that for laminar flow, the liquid-phase relative permeability is equal 
to the liquid volume fraction, while the gas-phase relative permeability is not a linear function of the liquid 
volume fraction. 
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I N T R O D U C T I O N  

T w o - p h a s e  flow in f rac tures  ( n a r r o w  channe l s )  is o f  g rea t  i m p o r t a n c e  in several  i ndus t r i a l  processes  
( c o m p a c t  hea t  exchangers ,  n u c l e a r  eng inee r ing)  a n d  in  several  geophys ica l  s i t ua t ions  (oil reservoirs ,  
g e o t h e r m a l  energy) .  F r o m  a p e t r o l e u m  recovery  a n d  exp lo i t a t i on  o f  g e o t h e r m a l  energy  v iewpoin t ,  
the a p p r o a c h  c o m m o n l y  used to descr ibe  s teady  state  l a m i n a r  two-phase  flows in f rac tures  is the 
genera l ized  D a r c y ' s  law: 

VL - -  kKrL 
# L  (VPL -- PEg) [l] 

kKrG tV P 
VG - ~-~ , G -  P~g) [21 

where  subscr ip t s  L a n d  G s tand ,  respectively,  for l iquid  a n d  gas, V is the superf icial  veloci ty 
(or  D a r c y ' s  velocity),  V P  the p ressure  g rad ien t , /~  the d y n a m i c  viscosi ty,  p the  f luid densi ty ,  k the 
e q u i v a l e n t  in t r ins ic  pe rmeab i l i t y  ( s ingle-phase  flow) o f  the f rac ture ,  Kr the relat ive pe rmeab i l i t y  
a n d  g the acce le ra t ion  due  to gravi ty .  This  law has  neve r  been  theore t ica l ly  just i f ied.  It  is on ly  based  
o n  the  a n a l o g y  be tween  a s ing le -phase  flow in p o r o u s  m e d i a  a n d  a s ing le -phase  flow in a H e l e - S h a w  
cell, for  which  the e q u i v a l e n t  in t r ins ic  pe rmeab i l i t y  is k = h2/12, h be ing  the gap  wid th  o f  the 
f racture .  
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Few experimental studies have been undertaken in order to verify [1] and [2] and to establish 
the relationship between relative permeabilities and the volume fraction. Romm (1966) studied 
two-phase flow of water and kerosene confined in different stripes of a smooth fracture by 
controlling the wettability of surfaces. The relative permeability of each phase is then equal to its 
volume fraction: Kr L = SL and Kr6 = SG, i.e. that no phase interfaces with the flow of the other. 
Consequently, KrL + Kr6 = 1. However, the generalization of this result was confirmed neither by 
the experimental works of Persoff et al. (1991, 1994) and Fourar et al. (1991, 1993), nor by the 
numerical simulations by Pruess & Tsang (1990) and Pyrak-Nolte et al. (1992). On the other hand, 
Ali et al. (1991) analyzed the effects of gap width and orientation on air-water two-phase flow in 
a narrow passage between two flat plates. As in Fourar  et al. (1993), for every orientation, except 
for horizontal flow between vertical plates, both the void fraction and friction pressure drop have 
been correlated by using the model of Lockhart  & Martinelli. 

In this paper we report additional results concerning two-phase (air-water) flow in artificial 
horizontal fractures. Experimental set-ups are described in the first part. Then, results concerning 
flow structures, pressure gradients and liquid volume fractions are presented. Using the formalism 
developed for two-phase flow in pipes, and by taking experimental observations into account, 
a theoretical relationship for the two-phase pressure gradient is proposed. This relationship is 
evaluated with experimental data. Then, results are analyzed with three models: (1) Lockhart & 
Martinelli model, (2) an equivalent homogeneous model and (3) the generalized Darcy model. 

E X P E R I M E N T A L  SET-UP 

The schematic of the experimental set-up is shown in figure 1. Two experimental set-ups were 
utilized. In the first set of experiments, the fracture consisted of two glass plates 1 m long and 0.5 m 
wide separated by I-ram-thick strips of stainless steel along the outer boundaries. The injector 
consisted of 500 stainless steel tubes of 1 mm outside diameter and 0.66 mm inside diameter. Air 
and water were injected through alternating capillary tubes to achieve uniform distribution of the 
inlet flow. For the second set of experiments, the fracture consisted of two bricks made of baked 
clay (28 x 14 cm) for which three gap widths ofh~ = 0.54 mm, h2 = 0.40 mm and h3 = 0.18 mm have 
been tested. The injector consisted of a metallic box filled with glass beads of 1 mm-diameter. 

For all experiments, air was injected at constant pressure and its volumetric flow rate was 
measured by a rotameter and corrected to the standard pressure. Water was injected by a calibrated 
pump. At the outlet of the fracture, the gas escaped to the atmosphere and the water was collected 
in a decanter and recycled. The fracture was initially saturated with water which was injected at 
a constant rate before each experiment. Air injection was then started and increased stepwise. When 
steady state was reached for each flow rate, the pressure drop and liquid volume fraction (in the 
case of the fracture made of glass only) were measured. Then the fracture was re-saturated with 
water and the experiment was repeated several times at different liquid flow rates. 

Air  

~] Injector 

Camera 

Glass plates 

Water Pressure taps 

- /  
Constraining bars 

( ~  Pump Decanter 

Figure 1. Experimental set-up. 
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BUBBLE FLOW FINGERING BUBBLE FLOW 

COMPLEX FLOW ANNULAR FLOW 

DROPLET FLOW 

Figure 2. Photographs of flow structures observed in the glass channel. The flow is from left to right. 
The liquid contained dye and appears red while the gas appears light. 
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For the fracture made of glass, nine liquid-filled pressure taps were cemented into holes drilled 
along the center line of the lower plate. Any pair of taps could be connected by valves to a 
differential transducer. The pressure at any given tap fluctuated rapidly, due to the successive 
arrival of  different fluid phases at the tap. Therefore, only the time-averaged values were recorded. 
The liquid volume fraction was measured by a volume balance method. The water volume in the 
decanter was measured at the beginning of  the experiment with the fracture completely saturated 
with flowing water. Then it was re-measured at steady state for each given air flow rate. The 
variation of  the water volume in the decanter was then used to calculate the liquid volume fraction 
in the fracture. 

For  the fracture made of baked clay, the pressure drop was measured by using two liquid-filled 
pressure taps cemented into holes at the inlet and the outlet of  the fracture. Both taps were 
connected to a differential transducer. Because the volume of the fracture was very small, the liquid 
volume fraction was not measured. 

The gap width of each fracture was calculated from laminar single-phase flow experiments 
obeying the cubic law: 

dP 12pL QL 
dx h 3 [3] 

QL is the volumetric liquid flow rate per unit width and /~e is the dynamic viscosity of the 
liquid-phase. 

E X P E R I M E N T A L  RES U LTS  

Flow structures 

By varying the flow rate for each phase, different flow structures were observed for the glass 
channel: bubbles, fingering bubbles, complex, annular and droplet flow. These flow structures were 
constantly in motion, never stopping, even momentarily. Photographs of flow structures for the 
glass channel are presented in figure 2, and the flow map is presented in figure 3. For  the clay 
channel, flow structures have not been visualized. 

For  a given liquid flow rate, at low gas flow rate we observed gas bubbles dispersed in the flowing 
liquid (bubbles flow). Increasing the gas flow rate increased the size of bubbles which started to 
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Figure 3. Flow map (glass channel). 
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become unstable by tip-splitting (fingering bubbles flow). Then when the gas flow rate was 
further increased, the flow became chaotic with no apparent structures (complex flow). At higher 
gas flow rates, the gas occupied the main part of the fracture, the liquid flowing as unstable films 
along the walls (annular flow). However, for low liquid velocities, films were replaced by liquid 
droplets dispersed in the flowing gas (dispersed droplet flow). Note that the flow structures 
described above, show more similarity to those observed in pipes than to those expected in porous 
media. 
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Two-phase pressure drops and liquid volume fractions 

The measured two-phase pressure drops against gas superficial velocity are presented in 
figure 4(a), (b), (c) and (d) for all fractures. Different curves were obtained. Each curve represents 
an individual experiment in which the liquid flow rate was held constant and the gas flow rate was 
increased. The observed trend conforms to what is commonly observed for two-phase flow in pipes. 
Actually, for a given liquid superficial velocity, increasing the gas superficial velocity increased the 

Cc) 
4O 

= o + o  

30 VL  (cm/s~ 

n~ ~ 3.91 

~v • 5.21 
¢ 7 .82  

20  • 10.55 

-- 13 .04  

o 15 .64  

A 18.27 
i 0 ,  

13. 

0 
0"~0 0"25 1 '~0 1 '~5 

Gas superficial velocity (m/s)  

C~) 
300 

o. 200  

1:3 

100  
03 

== 
(3 .  

C h3 = 0.18 mm) 

i ! 

1 2 3 

VL  (cm/s~ 

13 10,45 

• 13 ,06 

-- 17 ,38 

• 21 ,75  

" 26 .07  

Gas superficial velocity (m/s)  

Fig. 4 (c) and (d) 

Figure 4. Two-phase pressure gradient versus gas superficial velocity. (a) Fracture made of  glass (h 0 -- 
l ram); (b) fracture made of baked clay (h~ = 0.54 mm); (c) fracture made of  baked clay (h2 = 0.40 ram); 

(d) fracture made of  baked clay (h 3 = 0.18 ram). 
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Figure 5. Liquid volume fraction against gas superficial velocity. 
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pressure drop. As shown in figure 4 (a), (b), (c) and (d), the pressure gradient is almost a linear 
function of  the gas superficial velocity. Note that for the glass channel, there is no sharp variation 
in the pressure gradient when the flow structure changes, unlike flow in a pipe. Otherwise, for the 
clay channel and for given liquid and gas flow rates, the pressure drop increases when the gap width 
decreases as in single-phase flow, in accordance with the cubic law. 

Measured liquid volume fractions for the glass channel versus gas superficial velocity are 
presented in figure 5. The observed trend conforms to what is commonly observed for two-phase 
flow in pipes. The overlapping of curves is due to errors of measurements of  liquid volume fractions. 

MACROSC O P IC  LAWS 

The modeling is based on the formalism developed for two-phase flow in pipes, Delhaye (1981): 

dPL X L n O 

SL - ~ x  -- SLPLgx = ~- rL + ~- rL0 [4] 

SG dPG rCG ZOo 
Sopog~ = ~ ~o + ~ ~oo [5] 

where z~0 (i = L, G) is the average interfacial shear stress, zi the average wall shear stress, rr 0 the 
interfacial perimeter, lr i the wetted perimeter by phase i and A the channel area. In [4] and [5], 
rrL, rr6 and rr 0 indicate that the flow of  each phase is not only dependent on the volume fraction 
but also on the flow structure. This is a fundamental distinction in comparison with the situation 
in classical porous media where, in consequence of  the intervention of  capillary forces, one supposes 
that no particular configuration exists to emphasize the interracial phenomena. Equations [4] and 
[5] were solved taking into account the hypotheses suggested by the experiments: 

(i) only the wet phase (water) is in contact with channel wails (figure 6), the wetted perimeter 
by each phase is then given by: 

n L = 2 ( w + h ) ~ 2 w  and rrG=0 [6] 

where w is the width of  the channel (A = w x h), 

IJMF 21/4~-F 
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Figure 6. Schematic representation of two-phase configuration. 

(ii) the capil lary pressure is negligible, then the pressure gradient  is uni form in each phase, and: 

ZLo = - "rco = Zo [7] 

Thus,  the average wall shear stress is supposed to be given by: 

ZL = -- 6 #L UL [8] 
h 

where 
VL 

UL = $7  [91 

is the interstitial velocity, V L being the superficial velocity. As shown in Coutr is  et al. (1989), 
the above  hypotheses  must  be reconsidered for  a two-layer  flow. 
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Figure 7. Comparison between measured and calculated pressure gradients by using [12] (glass channel). 
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Consequently, macroscopic laws governing the horizontal flow (no gravity) of the liquid-phase, 
gas-phase and two-phase mixture are, respectively, given by: 

d P  12/'tL lie "t- no 
SL "~X "~" h2SL -A TO [ 1 0 ]  

dP no 
SG dx A "co [11] 

dP 12/t L V L 

d-x = h2SL [12] 

For the glass channel, we have plotted in figure 7, the measured versus the calculated pressure 
gradient from [12]. Different curves were obtained. Each curve represents an individual experiment 
in which the liquid flow rate was held constant and the gas flow rate was increased. For a given 
liquid flow rate, at gas flow rates corresponding to bubbles, fingering bubbles and complex flow, 
the measured and calculated pressure gradients are equal. However, at higher gas flow rates 
(annular flow), the measured pressure gradient is higher than that predicted by [12]. This 
discrepancy is caused by inertial forces (see below). 

LOCKHART & MARTINELLI MODEL 

The model of Lockhart & Martinelli (1949), which was developed for two-phase flow in pipes, 
consists in dimensionless correlations between pressure gradient and flow rates of phases. Lockhart 
& Martinelli defined the following parameters: 

--gas-phase friction multiplier: 

--liquid-phase friction multiplier: 

--Martinelli parameter: 

/_(dP/dx)  [13] 
46 = ~] ( dP/ dX)G 

/ ( d P / d x )  
4L = X/(--d-~ £kS L [14] 

46 /(  dP/ dX)L 
x = 4-;= x/i 7 dx)o 

[1 5] 

In these equations, (dP/dx) is the two-phase pressure gradient and (dP/dx)G and (dP/dx)L are, 
respectively, the gas and the liquid single-phase pressure gradients which would be obtained if each 
phase were flowing alone in the fracture with the same superficial velocity as under two-phase flow 
conditions. For a laminar-laminar flow regime, these pressure gradients are given by: 

d P )  12.UG VG [16] 
dxx c h2 

( d P )  12/~L VL 
L ---- h2 [17] 

The Martinelli parameter is then given by: 

= /t/~_~ vGVL [ 18] X 

The plot of figure 8 displays O6 versus X for data obtained with the glass channel. This plot 
shows that, except for the annular flow configuration, there is a linear relationship between these 
parameters: 

4 G = 1 + X [19] 
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Figure 8. Gas friction multiplier vs Martinelli parameter (glass channel). 

Equations [12] and [18] were obtained by assuming that the flow of each phase is laminar. 
The discrepancy observed between [19] and experimental data for the annular flow structure is 
caused by inertial forces. This will be verified in the next paragraph. 

From [15] and [19], we deduce the expression for ~L: 
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Figure 9. Liquid volume fraction vs Martinelli parameter (glass channel). 
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Figure 10. Gas friction multiplier vs Martinelli parameter (clay fracture). 

Thus, from [14], [17] and [20], we deduce: 

dP 12/t L V L 

dx h2 
[211 

By comparing [12] and [21], the expression for the liquid volume fraction can be derived: 

(x)2 SL= g ~  [221 

A plot of the measured liquid volume fraction SL versus the Martinelli parameter X is shown 
in figure 9. The curve of [22] is also plotted in figure 9. Values of the liquid volume fraction given 
by [22] are slightly higher than experimental values. This discrepancy is due to the fact that at the 
beginning of each experiment, the fracture was saturated with water. Therefore, capillary tubes for 
injection of gas-phase were partly occupied by water. When air injection started, water collected 
in the decanter came from both fracture and capillary tubes. The liquid volume in the decanter 
was then overestimated. As a result, the liquid volume fraction in the fracture was underestimated. 

The plot of figure 10 displays q~G versus X for data obtained with the clay channel. This plot 
shows that the data follow the same equation [19] as for the glass channel. As the liquid volume 
fraction was not measured for the clay channel, we suppose that it is given by [22]. 

C H A R A C T E R I Z A T I O N  OF FLOW REGIMES 

The establishment of previous relationships was based on the laminar flow hypothesis of each 
phase. In this section, we propose to verify the validity of this hypothesis. 

By considering the two phases flowing in the fracture as a single-phase, we defined the mixture 
friction factor by: 

4 k ( -  dP/ dx) 
2m = 2 [23] 

Pm Vm 
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and the mixture Reynolds number by: 

2hpm Vm 
Re,, = - -  [24] 

/Am 

where Pm is the mean density of the mixture: 

Pm = SLPL + SBPG [25] 

Vm is the superficial velocity of the mixture: 

Vm = VL "t- Vg [26] 

and /Am the dynamic viscosity of the mixture. 
The above equations are similar to those defined for the homogeneous flow model. However, 

for our experimental data, the velocities for both phases are not equal. 
Using [23]-[26], taking [12] into account and assuming that for a laminar flow regime the 

relationship between 2 m and Rem is given by: 

96 
'~+m - [27] 

Rein 

we deduce the expression of the dynamic viscosity of the mixture: 

QL 
/Am = /AL St (QL + Q~) [28] 

This expression of the dynamic viscosity of the mixture is unusual in the literature, However, 
taking [22] into account, [28] becomes: 

/Am = fl/AL + (1 - fl)/AG + 2~/7(I  - fl)/AL/AO [291 

where/3 = QL/(QL + QG) is the homogeneous liquid volume fraction (/? ¢ SL). It is interesting to 
compare the relationship [29] to the relationship proposed by Dukler et al. (1964) for two-phase 
flow in a pipe: 

/Am = fl/AL + ( l - -  f l ) /AG [ 3 0 ]  
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la L 



E 
, <  

t -  
O 

C .o_ 

J= 

p- 

O.  

6 
I- 

10 0 

10"1, 

10-2 

10-3 

AIR-WATER TWO-PHASE FLOW THROUGH A FRACTURE 

Flow pattern 
¢ ~  o Bubble 

N Fingering bubble 
-~L. • Complex 

" ~  • Annular 

"'N.. 
(hO =1 mm) - ~ l ~ p  

.,X. "= 96 ~ x ~ ' x - a =  • 
m Rem 

. . . .  ~ , ~  • , . , , • , ~ . . ~ .  
0 2 10 3 10 4 10 5 

Two-phase Reynolds number, Re m 

Figure 12. Two-phase friction factor (glass channel). 

633 

Curves of [29] and [30] are presented in figure 11. Because the dynamic viscosity of the gas is 
negligible in comparison with the dynamic viscosity of the liquid, [30] becomes: 

/am = fl/aL [31] 
In consequence of the square term [29] shows that V fl ~ ]0, 1[,/am > f l /aL '  

For data obtained with a glass channel, the plot of 2m versus Re m is shown in figure 12. Values of 
)~m and Re,, were calculated using [28]. The curve of[27] is also plotted in figure 12. For Rem ~< 4000, 
good agreement is obtained between experimental data and [27]. For Rem> 4000 corresponding 
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to annular flow, a deviation from [27] is observed. This deviation shows that for annular flow, the 
laminar hypotheses is not verified. This was confirmed by the analysis of the evolution of the 
liquid-phase friction factor: 

4 h ( -  dP / dx ) 
pL u[ 

against the liquid-phase Reynolds number: 

2hpL UL 
Re L - 

/~L 

[32] 

[33] 

where UL is the interstitial velocity defined by [9]. 
For laminar single-phase flow: 

96 
2L - [34] 

ReL 

The plot of )t L versus Re L is shown in figure 13. Different curves were obtained. Each curve 
represents an individual experiment in which the liquid flow rate was held constant and the gas 
flow rate was increased. For a given liquid flow rate, at gas flow rates corresponding to bubbles, 
fingering bubbles and complex flow, the data follow the curve of [34]. At higher gas flow rates 
(annular flow), deviation from [34] is observed. As for single-phase flows, this deviation is caused 
by inertial forces. 

For data obtained with the clay channel, the plot of 2m versus Re,, is shown in figure 14. In this 
case, 2rn and Rein were calculated by using [29]. The curve of the relationship [27] is also plotted 
in figure 14. Good agreement is obtained with experimental data and with the relationship [27]. 

THE G E N E R A L I Z E D  DARCY MODEL 

If we consider that the capillary pressure is negligible in our experiments, the pressure gradient 
in each phase is then equal to the observed pressure gradient under two-phase conditions: 

dPL _ dPG dP 
= - -  [351 

dx dx dx 
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Relative permeabilities are then expressed from [l] and [2] for horizontal flow (no gravity): 

12 /J  L g L 
Kr L - [36] 

h2dP 
dx 

12pG VG 
KrG = [37] 

h 2dP 
dx 

By comparing [36] to [12] we deduce that the liquid-phase relative permeability is equal to the 
liquid volume fraction: 

Kr L = S L [38] 

From the correlation between the gas and the liquid relative permeabilities: 

KrL I'LL VL 
- - -  - X 2 [ 3 9 ]  

Krc PG VG 

and taking [22] into account, the gas relative permeability can be derived: 

Kr G = (1 - x~L)  2 [40] 

For data obtained with the glass channel, the calculated KrL and Kr c from [36] and [37] are 
plotted as functions of the measured liquid volume fraction in figure 15. Because the regime of 
annular flow experiments is not laminar, the corresponding data cannot be interpreted by using 
the generalized Darcy model. Therefore, these data are not plotted in figure 15. A good agreement 
is obtained between [38] and [40] and the data for laminar flow. These results are confirmed in 
figure 16 for the clay channel experiments. In this case, the liquid volume fraction was calculated 
by using [22]. 

Note that the sum of relative permeabilities is much less than 1 at intermediate liquid volume 
fraction, and not equal to 1 as it is commonly assumed. This implies that strong interference 
between phases occurs in the fracture. 
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Figure 15. Relative permeabilities versus the liquid volume fraction (glass channel), 
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Figure 16. Relative permeabilities versus the liquid volume fraction (clay channel). 

On the other hand, the parameter X in [39] is the same as the Martinelli parameter defined by 
[18]. In fact, comparison between [13], [14], [36] and [37], and taking [16] and [17] into account leads 
to the following relationships: 

1 
q~_ - [411 

KrL 

1 
~ - [42]  

Kro 

So in the case where the capillary pressure is negligible, the generalized Darcy model is analogous 
to the Lockhart & Martinelli model. 

CONCLUSIONS 

Two-phase (air-water) flow experiments were conducted in artificial horizontal fractures (narrow 
channels). Two experimental set-ups were utilized. One set of experiments was performed by using 
two glass plates. The second set of experiments was performed by using two bricks made of baked 
clay. The results of the experiments support the following conclusions: 

(1) By varying the flow rates of each fluid phase, different flow structures were observed for 
the fracture made of glass (bubbles, fingering bubbles, complex, annular and droplet flow). 
These flow structures show more similarity to those observed in pipes than to those 
expected for porous media. 

(2) Using the formalism developed for two-phase flow in pipes, and by taking experimental 
observations into account, a theoretical relationship for the two-phase pressure gradient 
was proposed. Good agreement was obtained between this relationship and experimental 
data for laminar flow regime. 

(3) The Lockhart & Martinelli model gives a good fit for both pressure drop and liquid volume 
fraction against the Martinelli parameter at least for laminar flow regime. 

(4) Considering the two phases flowing in the fracture as a single phase with averaged prop- 
erties, the appropriate friction factor and Reynolds number of the mixture were defined. 
This model, which is similar to the homogeneous model, permits to select the experimental 
data corresponding to laminar flow regime. 
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(5) Using the generalized Darcy model, it was found that for a laminar flow regime, the liquid- 
phase relative permeability is equal to the liquid volume fraction; while the gas-phase 
relative permeability is not a linear function of the liquid volume fraction. 

The experimental results were obtained with two kinds of fractures. However, only one 
combination of fluids was studied: air and water. The results must be expanded and generalized 
to other pairs of fluids. 
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